Package: beast 1.1

beast: Bayesian Estimation of Change-Points in the Slope of Multivariate Time-Series

Assume that a temporal process is composed of contiguous segments with differing slopes and replicated noise-corrupted time series measurements are observed. The unknown mean of the data generating process is modelled as a piecewise linear function of time with an unknown number of change-points. The package infers the joint posterior distribution of the number and position of change-points as well as the unknown mean parameters per time-series by MCMC sampling. A-priori, the proposed model uses an overfitting number of mean parameters but, conditionally on a set of change-points, only a subset of them influences the likelihood. An exponentially decreasing prior distribution on the number of change-points gives rise to a posterior distribution concentrating on sparse representations of the underlying sequence, but also available is the Poisson distribution. See Papastamoulis et al (2017) <arxiv:1709.06111> for a detailed presentation of the method.

Authors:Panagiotis Papastamoulis

beast_1.1.tar.gz
beast_1.1.zip(r-4.5)beast_1.1.zip(r-4.4)beast_1.1.zip(r-4.3)
beast_1.1.tgz(r-4.4-any)beast_1.1.tgz(r-4.3-any)
beast_1.1.tar.gz(r-4.5-noble)beast_1.1.tar.gz(r-4.4-noble)
beast_1.1.tgz(r-4.4-emscripten)beast_1.1.tgz(r-4.3-emscripten)
beast.pdf |beast.html
beast/json (API)

# Install 'beast' in R:
install.packages('beast', repos = c('https://mqbssppe.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 4 scripts 219 downloads 115 mentions 20 exports 1 dependencies

Last updated 7 years agofrom:53085f1e14. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:beastbirthProbscomplexityPriorcomputeEmpiricalPriorParameterscomputePosteriorParameterscomputePosteriorParametersFreelocalProposallogLikelihoodFullModellogPriormcmcSamplermyUnicodeCharactersnormalizeTime0plot.beast.objectprint.beast.objectproposeThetasimMultiIndNormInvGammasimulateFromPriorsingleLocalProposaltruncatedPoissonupdateNumberOfCutpoints

Dependencies:RColorBrewer

Readme and manuals

Help Manual

Help pageTopics
Bayesian Estimation of Change-Points in the Slope of Multivariate Time-Seriesbeast-package
Main functionbeast
Birth ProbabilitiesbirthProbs
Complexity prior distributioncomplexityPrior
Compute the empirical mean.computeEmpiricalPriorParameters
Compute empirical posterior parameterscomputePosteriorParameters
Posterior parameterscomputePosteriorParametersFree
Fungal Growth DatasetFungalGrowthDataset
Move 3.blocalProposal
Log-likelihood function.logLikelihoodFullModel
Log-prior.logPrior
MCMC samplermcmcSampler
PrintingmyUnicodeCharacters
Zero normalizationnormalizeTime0
Plot functionplot.beast.object
Print functionprint.beast.object
Move 2proposeTheta
Prior random numberssimMultiIndNormInvGamma
Generate change-points according to the priorsimulateFromPrior
Move 3.bsingleLocalProposal
Truncated Poisson pdftruncatedPoisson
Move 1updateNumberOfCutpoints